Convergence of fixed points for closed graph operator satisfies Zamfirescu conditions

M. Joseph Jawahar Peppy ${ }^{1 *}$ and A. Anthony Eldred ${ }^{2}$

Abstract

In this article we establish a unique fixed point of a well known contraction mapping known as Kannan and Chatterjea mapping having a closed graph in a complete metric space. For such mappings, we consider an increasing sequence of subsets of a complete metric space into itself, so that a contraction condition is satisfied.

Keywords
Contraction mapping, closed graph, fixed point.
AMS Subject Classification
${ }^{1}$ Department of Mathematics, Manonmaniam Sundaranar University College, Govindaperi, Tirunelveli-627 414, Tamil Nadu, India.
${ }^{2}$ PG and Research Department of Mathematics, St.Joseph's College, Affiliated to Bharathidasan University, Trichy-620002, Tamil Nadu, India. *Corresponding author: ${ }^{1}$ jawaharpeppy@gmail.com
Article History: Received 01 February 2020; Accepted 29 March 2020
(C)2020 MJM.

Contents

1 Introduction 283
2 Main Results 283
References 286

1. Introduction

A mapping $T:(M, d) \rightarrow(M, d)$ from a metric space (M, d) into itself is said to have a closed graph if whenever $x_{n} \rightarrow x_{0}$ and $T x_{n} \rightarrow y_{0}$ for some sequence $\left(x_{n}\right)$ in M and some x_{0}, y_{0} in M, we have $y_{0}=T x_{0}$. C.Ganesa Moorthy and P.Xavier Raj [1] presented results for contraction mappings with variations in Domain. In this paper, we extend the Kannan and Chatterjea techniques to some contraction mapping of a closed graph to establish some fixed point theorems.

Definition 1.1. Zamfirescu [4] introduced the Banach fixed point theorem by combining Banach, Kannan and Chatterjea. i.e., For a mapping $T: E \rightarrow E$, there exist real numbers α, β, γ satisfying $0<\alpha<1,0<\beta, \gamma<\frac{1}{2}$ such that for each $x, y \in E$ at least one of the following is true

1. $d(T x, T y) \leq \alpha d(x, y)$
2. $d(T x, T y) \leq \beta[d(x, T x)+d(y, T y)]$
3. $d(T x, T y) \leq \gamma[d(x, T y)+d(y, T x)]$

Theorem 1.2 ([1], Theorem 2.1). Let (M, d) be a complete metric space. $T: M \rightarrow M$ have a closed graph. Let $M_{1} \subseteq M_{2} \subseteq$ $M_{3} \subseteq \cdots$ be subsets of M such that $T\left(M_{i}\right) \subseteq M_{i+1}, \forall i, M=$ $\bigcup_{j=1}^{\infty} M_{j}$ and $d(T x, T y) \leq k_{i} d(x, y) \forall x, y \in M_{i}$ where $k_{i} \in$ $(0,1)$ are constants such that $\sum_{n=1}^{\infty} k_{1} k_{2} \ldots k_{n}<\infty$. Then T has a unique fixed point in M.

Theorem 1.3 ([1], Theorem 2.6). Let $T: M \rightarrow M$ be a mapping on a complete metric space (M, d) with a closed graph. Let $k_{i} \in(0,1) \forall i$ such that $n k_{1} k_{2} \ldots k_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $k_{n}{ }^{n}$ does not converge to 1 as $n \rightarrow \infty$. Suppose $M_{1} \subseteq M_{2} \subseteq M_{3} \subseteq$ \ldots be subsets of M such that for every $i, T\left(M_{i}\right) \subseteq M_{i+1}$ and $d(T x, T y) \leq k_{i} d(x, y) \forall x \in M_{i}, \forall y \in M$. Let $x_{1} \in \bigcup_{j=1}^{\infty} M_{j}$. Then the sequence $\left(T^{n} x_{1}\right)$ converges to a fixed point of T in M. If $M=\bigcup_{j=1}^{\infty} M_{j}$, then T has a unique fixed point in M.

2. Main Results

Theorem 2.1. Let (M, d) be a complete metric space. T : $M \rightarrow M$ have a closed graph. Let $M_{1} \subseteq M_{2} \subseteq M_{3} \subseteq \ldots$ be subsets of M such that $T\left(M_{i}\right) \subseteq M_{i+1}, \forall i, M=\bigcup_{j=1}^{\infty} M_{j}$ and $d(T x, T y) \leq k_{i}[d(x, T x)+d(y, T y)] \forall x, y \in M_{i}$ where $k_{i} \in$ $\left(0, \frac{1}{2}\right)$ such that $\sum_{n=1}^{\infty} \frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \frac{k_{n}}{1-k_{n}}<\infty$. Then T has a unique fixed point in M.

Proof. Fix $x_{1} \in M_{1}$. Define $x_{n+1}=T x_{n}=T^{n} x_{1} \forall n=1,2, \ldots$ Then $d\left(x_{2}, x_{1}\right)=d\left(T x_{1}, x_{1}\right)$

Now,

$$
\begin{aligned}
d\left(x_{3}, x_{2}\right) & =d\left(T x_{2}, T x_{1}\right) \\
& \leq k_{1}\left[d\left(x_{2}, T x_{2}\right)+d\left(x_{1}, T x_{1}\right)\right] \\
& =k_{1}\left[d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)\right] \\
d\left(T^{2} x_{1}, T x_{1}\right) & \leq \frac{k_{1}}{1-k_{1}} d\left(x_{1}, T x_{1}\right)
\end{aligned}
$$

Similarly,

$$
d\left(T^{3} x_{1}, T^{2} x_{1}\right) \leq \frac{k_{2}}{1-k_{2}} \frac{k_{1}}{1-k_{1}} d\left(x_{1}, T x_{1}\right)
$$

Ingeneral we get,

$$
\begin{aligned}
d\left(T^{n+1} x_{1}, T^{n} x_{1}\right) \leq & \frac{k_{n}}{1-k_{n}} \frac{k_{n-1}}{1-k_{n-1}} \ldots \\
& \cdots \frac{k_{1}}{1-k_{1}} d\left(x_{1}, T x_{1}\right)
\end{aligned}
$$

For $n>m \geq 1$, we have

$$
\begin{aligned}
& d\left(T^{m} x_{1}, T^{n} x_{1}\right) \\
& \leq \\
& \quad d\left(T^{m} x_{1}, T^{m+1} x_{1}\right) \\
& \quad+d\left(T^{m+1} x_{1}, T^{m+2} x_{1}\right)+\ldots \\
& \quad+d\left(T^{n-1} x_{1}, T^{n} x_{1}\right) \\
& \leq \\
& \frac{k_{m}}{1-k_{m}} \frac{k_{m-1}}{1-k_{m-1}} \ldots \\
& \\
& \quad \ldots \frac{k_{1}}{1-k_{1}} d\left(x_{1}, T x_{1}\right) \\
& \quad+\cdots+\frac{k_{n-1}}{1-k_{n-1}} \frac{k_{n-2}}{1-k_{n-2}} \cdots \\
& \ldots \\
& \\
& \quad \frac{k_{1}}{1-k_{1}} d\left(x_{1}, T x_{1}\right) \\
& \leq \sum_{i=m}^{n-1} \frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \frac{k_{i}}{1-k_{i}} d\left(x_{1}, T x_{1}\right)
\end{aligned}
$$

$\therefore\left(T^{n} x_{1}\right)_{n=1}^{\infty}$ is a Cauchy sequence in M. Let it converges to x^{*} in M. Then $\left(T^{n+1} x_{1}\right)_{n=1}^{\infty}$ is also Cauchy and it converges to x^{*} in M. Since T has a closed graph in M. We should have $T x^{*}=x^{*}$ then x^{*} is a fixed point of T. If y^{*} is a fixed point of T. Then $x^{*}, y^{*} \in M_{n}$ so that,

$$
\begin{aligned}
0 & \leq d\left(x^{*}, y^{*}\right)=d\left(T x^{*}, T y^{*}\right) \\
& \leq k_{i}\left[d\left(x^{*}, T x^{*}\right)+d\left(y^{*}, T y^{*}\right)\right]=0 \\
0 & \leq d\left(x^{*}, y^{*}\right) \leq 0
\end{aligned}
$$

Which implies that $x^{*}=y^{*}$. This proves the uniqueness of the fixed point.

Example 2.2. Let $k_{n}=\frac{1}{3}, n=1,2,3, \ldots$ Then
$\sum_{n=1}^{\infty} \frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \frac{k_{n}}{1-k_{n}}<\infty$.
Let $\left.M=\left\{\frac{1}{3}, \frac{1}{3^{2}}, \frac{1}{3^{3}}, \ldots.\right\}\right\}$ and d be the usual metric on
M. Let us define $M_{n}=\left\{\frac{1}{3}, \frac{1}{3^{2}}, \frac{1}{3^{3}}, \ldots, \frac{1}{3^{2 n+1}}\right\}$ for each $n=1,2,3, \ldots$. Define $T: M \rightarrow M$ by

$$
T(x)= \begin{cases}0, & x=0 \\ \frac{1}{3^{n+2}}, & x=\frac{1}{3^{n}} \text { for } n=1,2,3, \ldots\end{cases}
$$

For $n>m$, we have

$$
\begin{aligned}
& \left|T\left(\frac{1}{m}\right)-T\left(\frac{1}{n}\right)\right| \\
& =\left|\frac{1}{3^{m+2}}-\frac{1}{3^{n+2}}\right| \\
& =\left|\frac{1}{3^{m+2}}-\frac{1}{3^{n+1}}+\frac{1}{3^{n+1}}-\frac{1}{3^{n+2}}\right| \\
& \leq \frac{1}{3}\left\{\left|\frac{1}{3^{m+1}}-\frac{1}{3^{n}}\right|+\left|\frac{1}{3^{n}}-\frac{1}{3^{n+1}}\right|\right\} \\
& <\frac{1}{3}\left\{\frac{2}{3^{n+1}}+\left|\frac{1}{3^{n}}-\frac{1}{3^{n+1}}\right|\right\} \\
& =\frac{1}{3}\left\{\left|\frac{1}{3^{m}}-\frac{1}{3^{m+1}}\right|+\left|\frac{1}{3^{n}}-\frac{1}{3^{n+1}}\right|\right\} \\
& <\frac{1}{3}\left\{\left|\frac{1}{3^{m}}-\frac{1}{3^{m+2}}\right|+\left|\frac{1}{3^{n}}-\frac{1}{3^{n+2}}\right|\right\}
\end{aligned}
$$

This verifies the conditions of the theorem 2.1 and the fixed point is 0 .

Theorem 2.3. Let (M, d) be a complete metric space. T : $M \rightarrow M$ have a closed graph. Let $M_{1} \subseteq M_{2} \subseteq M_{3} \subseteq \ldots$ be subsets of M such that $T\left(M_{i}\right) \subseteq M_{i+1}, \forall i, M=\bigcup_{j=1}^{\infty} M_{j}$ and $d(T x, T y) \leq k_{i}[d(x, T y)+d(y, T x)] \forall x, y \in M_{i}$ where $k_{i} \in$ $\left(0, \frac{1}{2}\right)$ such that $\sum_{n=1}^{\infty} \frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \frac{k_{n}}{1-k_{n}}<\infty$. Then T has a unique fixed point in M.

Proof. Fix $x_{1} \in M_{1}$. Define $x_{n+1}=T x_{n}=T^{n} x_{1} \forall n=1,2, \ldots$ Then $d\left(x_{2}, x_{1}\right)=d\left(T x_{1}, x_{1}\right)$ Now,

$$
\begin{aligned}
d\left(x_{3}, x_{2}\right) & =d\left(T x_{2}, T x_{1}\right) \\
& \leq k_{1}\left[d\left(x_{2}, T x_{1}\right)+d\left(x_{1}, T x_{2}\right)\right] \\
& =k_{1}\left[d\left(x_{2}, x_{2}\right)+d\left(x_{1}, x_{3}\right)\right] \\
& \leq k_{1}\left[d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)\right] \\
d\left(T^{2} x_{1}, T x_{1}\right) & \leq \frac{k_{1}}{1-k_{1}} d\left(x_{1}, T x_{1}\right)
\end{aligned}
$$

Similarly,

$$
d\left(T^{3} x_{1}, T^{2} x_{1}\right) \leq \frac{k_{2}}{1-k_{2}} \frac{k_{1}}{1-k_{1}} d\left(x_{1}, T x_{1}\right)
$$

In general we get,

$$
d\left(T^{n+1} x_{1}, T^{n} x_{1}\right) \leq \frac{k_{n}}{1-k_{n}} \frac{k_{n-1}}{1-k_{n-1}} \cdots \frac{k_{1}}{1-k_{1}} d\left(x_{1}, T x_{1}\right)
$$

For $n>m \geq 1$, we have

$$
\begin{aligned}
d & \left(T^{m} x_{1}, T^{n} x_{1}\right) \\
\leq & d\left(T^{m} x_{1}, T^{m+1} x_{1}\right)+d\left(T^{m+1} x_{1}, T^{m+2} x_{1}\right) \\
& +\cdots+d\left(T^{n-1} x_{1}, T^{n} x_{1}\right) \\
\leq & \frac{k_{m}}{1-k_{m}} \frac{k_{m-1}}{1-k_{m-1}} \cdots \frac{k_{1}}{1-k_{1}} d\left(x_{1}, T x_{1}\right) \\
& +\cdots+\frac{k_{n-1}}{1-k_{n-1}} \frac{k_{n-2}}{1-k_{n-2}} \cdots \\
& \cdots \frac{k_{1}}{1-k_{1}} d\left(x_{1}, T x_{1}\right) \\
\leq & \sum_{i=m}^{n-1} \frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \frac{k_{i}}{1-k_{i}} d\left(x_{1}, T x_{1}\right)
\end{aligned}
$$

$\therefore\left(T^{n} x_{1}\right)_{n=1}^{\infty}$ is a Cauchy sequence in M.
Let it converges to x^{*} in M. Then $\left(T^{n+1} x_{1}\right)_{n=1}^{\infty}$ is also Cauchy and it converges to x^{*} in M.

Since T has a closed graph in M. We should have $T x^{*}=x^{*}$ then x^{*} is a fixed point of T.

If y^{*} is a fixed point of T. Then $x^{*}, y^{*} \in M_{n}$ so that,

$$
\begin{aligned}
0 & \leq d\left(x^{*}, y^{*}\right)=d\left(T x^{*}, T y^{*}\right) \\
& \leq k_{i}\left[d\left(x^{*}, T y^{*}\right)+d\left(y^{*}, T x^{*}\right)\right] \\
& =k_{i}\left[d\left(x^{*}, y^{*}\right)+d\left(y^{*}, x^{*}\right)\right] \\
& =2 k_{i} d\left(x^{*}, y^{*}\right) \\
\left(1-2 k_{i}\right) d\left(x^{*}, y^{*}\right) & \leq 0
\end{aligned}
$$

This implies $d\left(x^{*}, y^{*}\right)=0$ as $1-2 k_{i}>0$. Hence x^{*} is a unique fixed point of T.

Theorem 2.4. Let $T: M \rightarrow M$ be a mapping on a complete metric space (M, d) with a closed graph. Let $k_{i} \in\left(0, \frac{1}{2}\right)$ $\forall i$ such that $n \frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \ldots \frac{k_{n}}{1-k_{n}} \rightarrow 0$ as $n \rightarrow \infty$ and $\left(\frac{k_{n}}{1-k_{n}}\right)^{n}$ does not converge to 1 as $n \rightarrow \infty$. Suppose $M_{1} \subseteq$ $M_{2} \subseteq \ldots$ be subsets of M such that for every $i, T\left(M_{i}\right) \subseteq M_{i+1}$ and $d(T x, T y) \leq k_{i}[d(x, T x)+d(y, T y)] \forall x \in M_{i}, \forall y \in M$. Let $x_{1} \in \bigcup_{j=1}^{\infty} M_{j}$. Then the sequence $\left(T^{n} x_{1}\right)$ converges to a fixed point of T in M. If $M=\bigcup_{j=1}^{\infty} M_{j}$, then T has a unique fixed point in M.

Proof. Let $x_{1} \in M_{1}$. Let us write $x_{n+1}=T x_{n}=T^{n} x_{1} \forall n=$ 1, 2, ...
Then $d\left(T^{n+1} x_{1}, T^{n} x_{1}\right) \leq \frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \frac{k_{n}}{1-k_{n}} d\left(T x_{1}, x_{1}\right)$ for each n.
Hence $d\left(x_{m+1}, x_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$.

For $n>m \geq 1$,

$$
\begin{aligned}
d & \left(x_{n}, x_{m}\right) \\
\leq & d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{m+1}\right)+d\left(x_{m}, x_{m+1}\right) \\
= & d\left(T^{n-1} x_{1}, T^{n} x_{1}\right)+d\left(T^{n} x_{1}, T^{m} x_{1}\right) \\
& +d\left(T^{m-1} x_{1}, T^{m} x_{1}\right) \\
\leq & \frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \frac{k_{n-1}}{1-k_{n-1}} d\left(T x_{1}, x_{1}\right) \\
& +\frac{k_{m}}{1-k_{m}} d\left(x_{n}, x_{m}\right)+\frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \\
& \ldots \frac{k_{m-1}}{1-k_{m-1}} d\left(T x_{1}, x_{1}\right) \\
\leq & m \frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \frac{k_{n-1}}{1-k_{n-1}} d\left(T x_{1}, x_{1}\right) \\
& +\left(\frac{k_{m}}{1-k_{m}}\right)^{m} d\left(x_{n}, x_{m}\right) \\
& +m \frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \frac{k_{m-1}}{1-k_{m-1}} d\left(T x_{1}, x_{1}\right)
\end{aligned}
$$

So,

$$
\begin{aligned}
& d\left(x_{n}, x_{m}\right) \\
& \leq\left[m\left(\frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \frac{k_{n-1}}{1-k_{n-1}}\right)\right. \\
& \left.+m\left(\frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \frac{k_{m-1}}{1-k_{m-1}}\right)\right] \frac{d\left(T x_{1}, x_{1}\right)}{1-\left(\frac{k_{m}}{1-k_{m}}\right)^{m}} \\
& \leq\left[m\left(\frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \frac{k_{m-1}}{1-k_{m-1}}\right)\right. \\
& \left.+m\left(\frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \frac{k_{m-1}}{1-k_{m-1}}\right)\right] \frac{d\left(T x_{1}, x_{1}\right)}{1-\left(\frac{k_{m}}{1-k_{m}}\right)^{m}} \\
& =\frac{2 m\left(\frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \frac{k_{m-1}}{1-k_{m-1}}\right)}{1-\left(\frac{k_{m}}{1-k_{m}}\right)^{m}} d\left(T x_{1}, x_{1}\right)
\end{aligned}
$$

Therefore, $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $m, n \rightarrow \infty$. Hence $\left(x_{n}\right)$ is Cauchy. Thus, if $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty, T x^{*}=x^{*}$ because T has a closed graph. The same argument is applicable for the general case $x_{1} \in M_{n}$.

Theorem 2.5. Let $T: M \rightarrow M$ be a mapping on a complete metric space (M, d) with a closed graph. Let $k_{i} \in\left(0, \frac{1}{2}\right)$ $\forall i$ such that $n \frac{k_{1}}{1-k_{1}} \frac{k_{2}}{1-k_{2}} \cdots \frac{k_{n}}{1-k_{n}} \rightarrow 0$ as $n \rightarrow \infty$ and $\left(\frac{k_{n}}{1-k_{n}}\right)^{n}$ does not converge to 1 as $n \rightarrow \infty$. Suppose $M_{1} \subseteq$ $M_{2} \subseteq \ldots$ be subsets of M such that for every $i, T\left(M_{i}\right) \subseteq M_{i+1}$ and $d(T x, T y) \leq k_{i}[d(x, T y)+d(y, T x)] \forall x, y \in M_{i}, \forall y \in$ M. Let $x_{1} \in \bigcup_{j=1}^{\infty} M_{j}$. Then the sequence $\left(T^{n} x_{1}\right)$ converges to a fixed point of T in M. If $M=\bigcup_{j=1}^{\infty} M_{j}$, then T has a unique fixed point in M.

Proof. The proof follows from the above theorems.

References

${ }^{\text {[1] }}$ C. Ganesamoorthy and P. Xavier Raj, Contraction mapping with variations in Domain, J. Analysis, 16(2008), 53-58.
${ }^{[2]}$ W.A. Kirk, Fixed point of Asymptotic contractions, J. Math. Anal. Appl., 227(2003), 645-650.
${ }^{[3]}$ S. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc., 13(1962), 459-465.
[4] Zamfirescu, Fixed point theorems in metric spaces, Arch. Math., 23(1972), 292-298.

$$
\operatorname{ISSN}(\mathrm{P}): 2319-3786
$$

Malaya Journal of Matematik
ISSN(O):2321-5666

